
Introduction to Music 4C (M4C)

by James Beauchamp

School of Music, University of Illinois at Urbana-Champaign
Copyright 1996

INTRODUCTION

Music 4C is a software synthesis program written by Scot Aurenz at the University of Illinois at Urbana-
Champaign in 1985; it has been considerably updated since that time. M4C is closely related to Music
4BF, a music program written by Godfrey Winham and Hubert Howe at Princeton University in the late
1960’s. Whereas 4BF was written entirely in Fortran and employs instrument definitions written in
Fortran, M4C is written entirely in C for the Unix environment and employs instrument definitions
written in the C language.

M4C can be used to produce sequences of sounds organized according to specified start times, durations,
and timbral qualities, and with any desired degree of accuracy. There is no ultimate limit on the number
and types of different timbres that can be generated, and any instrument can play against itself as many
times as one pleases. The only practical limits are those which may be imposed by the particular
computer being used, not by the program. Moreover, any timbral algorithm can be programmed (in the C
language).

Since M4C is a software synthesis language, music is not produced in real time. The time required to
produce a piece depends on the length of a piece, its complexity, the amount of other activity on the
computer, and the speed of the computer. M4C is written in C for the Unix environment, and it runs on a
variety of machines which employ the Unix operating system. As one moves to faster machines, the turn-
around time to compute a piece becomes shorter. For example, a Dec Alpha computer is much faster
than a NeXT, although not as cheap. As you are probably aware, the general speed of computers is
accelerating at a very rapid pace, to the point that upscale home computers now rival main frames used
just a few years ago.

This tutorial assumes that the reader has access to a Unix machine that has M4C and a digital-to-analog
conversion system installed and that the reader has already achieved a reasonable facility with Unix and a
Unix editor such as vi. We also assume that the reader has a basic understanding of synthesis patches,
which, for example, he/she might gain through an introductory course in electronic music.

RUNNING AN M4C JOB

The first step is to construct an M4C score file, which is simply a list of musical notes given in a numeric
format. This will be the subject of the next section.

M4C jobs are normally run in background mode. This means that as soon as you initiate an M4C job,
you can do something else on the computer. Or else you can just log off and leave. When you return the
job will probably be done. To initiate the computation of a piece, you normally use the command gom4c
as follows (items italicized are your responses) :

1

% gom4c (’%’ is the Unix command prompt)

run file is m4c.class
score file is filename.sc
sound file is filename.snd
list file is filename.list

m4c.class is a globally available run file used to compute the group of sounds or piece. It contains
several pre-compiled instruments that are ready-to-use and are described in this tutorial.

filename.sc is the name of a text file containing your "event list" score.

filename.snd is the name of the sound file to be created by the M4C job.

filename.list is an text file which gives the progress of your job. You may type it to the screen using cat
filename.list or tail -f filename.list at any time.

Whereas m4c.class is always used for this tutorial, filename.sc, filename.snd, and fileneame.list are file
names that you supply. (The names before the ’.’ don’t have to be the same, but this is usually
convenient.)

For convenience, an alternative is

% gom4C

run file is m4c.class
I/O file is filename

In this case, except for the extensions (.sc, .snd, .list), the score, sound, and list files all have the same
names. This usually makes it easier to organize your files.

If you type ps aux | grep m4c at the Unix command prompt, you will see something like

 yourlogin PID TIME m4c.class filename.snd filename.sc

The PID is a process number, which you can use if you want to cancel the job. This can be done by
executing kill PID. TIME tells you how long the job has been running. If there are two lines like this,
you should kill both of them. Also, you should remove the two files S1PID and S2PID, which are left in
your directory whenver you cancel a job before it is done.

Use of gom4c or gom4C results in a monaural sound file. If you want to produce a stereo file, you should
use gom4c2 (or gom4C2) instead. However, this assumes that your score is designed for stereo, and we
will delay a discussion of this possibility until a later section (RUNNING A STEREO JOB). We
recommend that your first experiments be done in monaural mode, since this will take up much less space
on the computer’s disk.

2

M4C SCORE FILES

The score file can be prepared using the vi or other Unix editor. Let’s start first by looking at a typical
score file. We’ll call our example file BachGm.sc (The .sc extension is traditional for score files.) It
consists of a series of events or statements. Here it is:

/* Beginning of Bach’s "Fugue in G minor" */

I (Pluck, 0, 3) {8.07 10000 60} /* G4 "Mis- */
I (* 1 *) {9.02 > } /* D5 ter */
I (* 2 *) {8.10 > } /* Bb4 Bach */
I (* 3.5 *) {8.09 > } /* A4 wrote */
I (* 4 *) {8.07 > } /* G4 man- */
I (* 4.5 *) {8.10 > } /* Bb4 y */
I (* 5 *) {8.09 > } /* A4 tunes */
I (* 5.5 *) {8.07 > } /* G4 that */
I (* 6 *) {8.06 > } /* F#4 sound */
I (* 6.5 *) {8.09 > } /* A4 like */
I (* 7 *) {8.02 > } /* D4 this!" */
End

We see that every line except the last begins with I. The I denotes an "instrument statement", which gives
a number of parameters for the note to be played. "Pluck" is the NAME of the instrument to be played
(without the quotes). (We have only shown the use of one instrument, but many different instruments can
be incorporated, depending on the orchestra available.) The first number on the line is the START TIME
for the note, and the next is the note’s DURATION over which the note is active (played). Note that the
INSTRUMENT NAME, START TIME, and DURATION values are enclosed in parentheses. These are
primary parameters, which must be given for any note. The remaining parameters, enclosed in braces ({
}), are optional (although the braces are mandatory). Their meanings depend entirely on the instrument
being used, although frequently the first parameter of this group will be PITCH and the second will be
AMPLITUDE. For the Pluck instrument, PITCH is given in octave-point pitch-class,one of the many
possible pitch/frequency formats. In this case, the number to the left of the decimal point gives the octave
(the standard plus 4), and the number to its right gives the pitch-within-the-octave. Thus, 8.09
corresponds to "A 440" (A4); 8.00 corresponds to "middle C" (C4). Also, for the Pluck instrument, the
second number actually gives the initial amplitude of the tone synthesized, and the third number
designates the number of decibels by which the tone decays during its duration.

The score has other features as well. It must end with an End statement. Individual items may be
repeated from a previous statement using an asterisks (*). Groups of items occuring through the end of a
statement may be repeated using >. As in the C language /* and */ can be used to enclose comments.
The format is very free; white space is ignored, and either spaces (any number) or single commas may be
used as separators; a statement may actually spread over several lines; the statement ends only when a
right brace (}) is reached.

START TIMEs may be given in any order (even in backwards order, if you want to be difficult!); M4C
sorts all notes according to ascending START TIMEs before execution. Also, a DURATION need not be
the difference of successive START TIMES; i. e., successive notes played by the same INSTRUMENT
(e.g., Pluck) can overlap.

3

Another type of statement is the F statement, which is similar in form to the I statement, but is used to
define a waveform or envelope function for an instrument appearing subsequently in the score. Here a
function generator name substitutes for the instrument name. Details on use of the F card will be given
when a particular instrument requiring it is described in a later section.

THE THREE PASSES OF M4C

As mentioned above, Music 4C is a loose translation of Music 4BF. The M4C score format is actually
very similar to those used in older computer music languages such as Music 4BF, Music 360, Music 11,
etc; however, the format used in M4C is considerably freer than that of the older languages. Moreover,
like these precursors, the computation of Music 4C is split into 3 passes. In Pass 1 the output sound file is
initialized, the input score file is read in, various parameters are set, instruments are initialized, and
instances of the instruments are allocated. In Pass 2 the I and F statements are sorted according to action
time, making it unnecessary for the user to input his statements in time order. Pass 3 schedules the notes
to "play" one at a time and output their samples to the output file. Pass 1 and Pass 2 create temporary
intermediate files labeled S1PID and S2PID, which are read by Pass2 and Pass3, respectively. (PID
refers to the process identification number of the job.) While the job is running, these files will be in your
area; they are automatically removed when the job completes, but should be removed manually if, for
some reason, your job is aborted before completion.

THE M4C.CLASS INSTRUMENTS

A number of instruments, which form an "orchestra", have been incorporated in the M4C run file
m4c.class for the novice to experiment with. After working with these, the next step would be to design
one’s own orchestra based on available instruments. After that, one could move on and write his own C-
based M4C instruments. We will be explaining how the various instruments work in terms of acoustical
parameters; waveform, spectrum, and envelope graphs; and "flow diagrams". For further discussion of
these concepts, we refer you to Computer Music: Synthesis, Composition, and Performance by
Charles Dodge and Thomas Jerse [Schirmer Books, 1986] and the forthcoming Computer Music
Tutorial by Curtis Roads [MIT Press, 1996].

For scoring purposes, an instrument’s behavior is defined by its I card format. Although an I statement
always begins with ’I(NAME START DUR) {’ -- for example, ’I(Pluck 0 1) {’ -- after the left brace,
each instrument is controlled by a different set of parameters. There are a few parameters in common,
however. The first is generally pitch, given in octave-point pitch-class notation (e.g., 8.09 for A440).
The second is generally amplitude given in units of 0 to 30000. The last parameter, which is optional, is
usually a value between 0 and 1, used to specify the stereo speaker allocation. I. e., it gives the proportion
of the sound to be generated from the left speaker, and the remainder is automatically generated from the
right speaker. Other than these parameters, the parameters are specific to the type of instrument being
programmed.

One or more instrument names can be used for each instrument type. Moreover, each instrument name
can be used to simultaneously play several notes up to a fixed limit, depending on the instrument name
and type.

4

THE PLUCK INSTRUMENT

Pluck is generated using the Karplus-Strong algorithm, a technique introduced in 1983 [Karplus and
Strong, 1983; Jaffe and Smith, 1983]. It is basically accomplished by introducing a short noise burst into
a feedback delay network, i. e., a simple reverberator system. A definite pitch is created, which is
controlled mainly by the amount of delay, a delay too short for individual echoes to be heard. In addition,
several tricks have been employed to provide for fine control of pitch and decay length. The result is a
percussive sound which strongly resembles the sound of an acoustical string.

A few main features of the sound are evident. First, the beginning of the sound is characterized by an
immediate attack and is very complex, due to the sudden noise burst. The use of noise, a random signal,
insures that every attack is slightly different. This is subtle to hear, but it is definitely noticeable over a
long period of time. Second, the amplitude decays exponentially to a level prescribed on the I statement.
Third, the harmonic complexity of the sound decreases as the sound progresses until it becomes virtually
sinusoidal by the end of the sound.

The amplitude parameter, which is the second parameter after the left brace, actually is the beginning
amplitude of the sound. The third parameter gives the amount of attenuation (in decibels) which occurs
during the sound’s duration.

We can sketch the amplitude envelope of the Pluck tone as follows:

AMP

linear
amplitude

AMP×10-DB_DECAY/20

START START + DUR

time

If we plotted decibels as the vertical dimension, the curve would be a descending straight line with a slope
equal to -DB_DECAY/DUR. The perceived duration of the tone is more closely related to this slope than
to the physical duration. For this reason, it is frequently a good idea to keep the Pluck tone durations
constant and let the tones overlap to simulate the effect of many undamped strings being played. Note that
in this case the durations will be longer than the time between successive start times.

It is possible to make many simultaneous strings sound to sound at the same time, so long as the number-
of-instances limit given below is not exceeded. If this limit is exceeded, M4C will delete the excess notes
and issue a (nonfatal) error message.

Pluck Instrument Type Summary:

Name Available: Pluck

Number of Instances per Name: 50

5

I Statement Template: I(Pluck START DUR) {OCT.PITCH AMP DB_DECAY}

Typical I Statement: I(Pluck 0 1) {6.03 20000 60}

Flow Diagram:

NOISE BURST
(one period)

Output

Filters
for Tuning and
Decay Control

Delay AMP
PITCH
DUR
DB_DECAY

+ ×

PLUCK-ADSR INSTRUMENT

The perceived duration of a percussive sound is determined more by its decay rate than its actual
performance duration. With the ordinary Pluck instrument, the decay rate is given by DB/DUR. DB is
usually chosen to be at least 60, which corresponds to an amplitude reduction of ×.001, because a lesser
figure is liable to result in an audible click at the end of the tone. Unfortunately, this means that, unless
note overlap is used, the duration will seem to be much shorter than it actually is. The solution is to have
two decay rates, a long initial decay followed by a faster final decay (analogous to the damping of a piano
pedal. It is also interesting to be able to soften the attack of the Pluck tone. (There is no reason to limit
ourselves to sounds like those which can be physically produced.) To enable a double decay and/or soft
attack, we programmed this instrument to have a complete ADSR envelope in addition to the normal
exponential decay of the Pluck. With the Pluck-ADSR instrument type, the Karplus-Strong algorithm is
amplitude-controlled by an ADSR envelope to provide additional control over the attack and decay of the
sound. The total envelope is the product of the exponential decay and the ADSR.

The ADSR (standing for Attack-Decay-Sustain-Release) is one of the oldest standard envelope shapes
used in electronic music. It was first used in Moog Synthesizers during the 1960’s, and was a standard for
analog synthesizers even during the 1980’s. This envelope is also employed in the Phase Modulation
instrument described in another section.

A graph of the ADSR envelope is given below:

1

SUS

DUR
ATTACK DECAY SUSTAIN TIME RELEASE

0

6

The four parameters for the ADSR are ATTACK, DECAY, SUS, and RELEASE. ATTACK, DECAY,
and RELEASE are given in seconds, and their sum should always be less than the duration of the sound,
DUR. SUS is the sustain level relative to the peak level (always 1.0) of the envelope. Therefore, SUS
should always be in the range 0 to 1.0. The sustain time can be automatically calculated from the other
times given using

 SUSTAIN TIME = DUR - (ATTACK + DECAY + RELEASE)

Note that unlike the case with many synthesizers, the ADSR release does not extend past the termination
of the note, but is included within the note. Note also that the true envelope of the Pluck-ADSR
instrument is the product of the Pluck’s exponential decay envelope and the ADSR envelope.

Pluck-ADSR Instrument Summary:

Names Available: Pladsr

Number of Instances per Name: 50

I Statement Template: I(Pladsr START DUR) {OCT.PITCH AMP DB_DECAY ATTACK
 DECAY SUS RELEASE}

Typical I statement: I(Pladsr 0 1) {7.11 20000 20 .02 .01 .7 .2}

Flow Diagram:

PITCH
AMP
DB
DUR

ATTACK

DECAY
RELEASE
SUS
DUR

(Karplus-Strong)
Pluck

Generator

ADSR
ENVELOPE

GEN

× Output

References on the Karplus-Strong plucked string algorithm:

1. K. Karplus and A. Strong, "Digital Synthesis of Plucked String and Drum Timbres", Computer Music
Journal, Vol. 7, No. 2, pp. 43-55 (1983).

2. D. A. Jaffe and J. O. Smith, "Extensions of the Karplus-Strong Plucked-String Algorithm", Computer
Music Journal, vol. 7, No. 2, pp. 56-69 (1983).

3. C. R. Sullivan, "Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with
Distortion and Feedback", Computer Music Journal, Vol. 14, No. 3, pp. 26-37 (1990).

7

THE GLIDE INSTRUMENT

Glide changes its pitch linearly from the beginning to the end of a note. In order to accomplish this linear
change, the frequency must change exponentially, as accomplished by an EXPON unit generator.
Amplitude control is accomplished with a LINENS generator, which simply turns on according to a
certain attack time (TA) and turns off according to a certain decay time (TDY).

The sum of the attack and decay times should be less than the duration of the note. The waveform for
Glide is a sine wave, a single frequency with no overtones. One of the ways to use Glide is to combine
several notes together to form a tonal cluster. The glide feature allows tone groups to vary in closeness,
and thus in texture, during notes and from one note to the next.

Since GL1, ..., GL10 have only one instance each, they can be used to connect seamlessly with previous
and subsequent notes. Notes which connect in this fashion should "match", in that the ending time, pitch,
and amplitude of the previous note should match the starting time, pitch, and amplitude of the current
note. Using one instance guarantees that the sine wave phases of the adjacent notes will match.

Glide Instrument Summary:

Names Available: Glide, GL1, ..., GL10

Instances per Name: Glide, 50; GLn, 1 each

I Statement Template:
I(GLn START DUR) {START_PITCH AMP ATTACK DECAY PITCH_CHANGE}

Typical I Statement: I(GL1 0 1) { 8.09 20000 .02 .02 .05}

Flow Diagram:

convert
convert

 LINENS
ENV GEN

 SINE WAVE
OSCILLATOR

×

START_PITCH
PITCH_CHANGE
DUR
ATTACK
DECAY
AMP EXPON

 Output
(Mono or Stereo)

8

THE GLIDE INSTRUMENT WITH VARIABLE WAVEFORM FUNCTION (GF instrument)

This instrument is identical to the ordinary Glide instrument except that instead of a sine wave, it uses a
variable waveform which can be programmed. The method for changing the waveform is to use a
Function or F statement in the score to load a waveform into a particular numbered function. The F
statement precedes an I statement or group of I statements.

An F statement is similar to an I statement except that 1) a Function Generator name is used instead of an
instrument name; 2) a start time is given but no duration since the function generated remains loaded until
another F statement regenerates this function; 3) the parameters inside the braces describe a function
rather than the settings of an instrument. Note that the time given by the F statement causes the function
to change instantaneously; i. e., a waveform can actually change in the middle of a note.

The Function Generator normally used for the GF instrument is Fourfun, which generates a function by
addition of sine waves of specified amplitudes, i. e., by Fourier synthesis. Note that in order for the GF
instrument to work, each I statement must list a particular function number, and this function must be
defined by at least one previous F statement. Besides the function number, the Fourfun F statement
includes the number of harmonics to be generated followed by the amplitudes of each of the harmonics.
Spectrum foldover occurs when the frequency of the highest partial exceeds the half sample frequency.
To prevent this, the number of partials must be less than the half sample frequency divided by the
fundamental frequency.

GF Instrument Summary:

Names Available: GFins

Instances per Name: 50

F Statement Template: F(Fourfun START) {FUNC_NO n AMP1 AMP2 . . . AMPn}

I Statement Template: I(GFins START DUR) {START_PITCH AMP FUNC_NO ATTACK
DECAY PITCH_CHANGE}

Typical F Statement: F(Fourfun 0) {1 9 1 2 1.5 1 .7 .5 .3 .2 .1}

Typical I Statement: I(GFins 0 1) { 8.09 20000 1 .02 .02 .05}

Flow Diagram:
Same as Glide except a variable function oscillator replaces the sine wave oscillator.

9

THE BUZZ INSTRUMENT

This instrument plays a sound composed of a series of harmonics all at the same amplitude. The number
of harmonics is given on the I statement and can be changed from note to note. No F statement is
necessary, since the shape of the spectrum is always flat. The amplitude envelope is accomplished by a
LINENS unit generator, which simply provides turn-on and turn-off according to the given attack and
decay times (TA and TDY).

Buzz Instrument Summary:

Names Available: Buzz

Instances per Name: 50

I Statement Template: I(Buzz START DUR) {OCT.PITCH AMP NO_HARMS TA TDY}

Typical I Statement: I(Buzz 0 1) { 8.09 20000 12 .02 .02 }

Flow Diagram:

convert

 LINENS
ENV GEN

 BUZZ
OSCILLATOR

OCT.PITCH
DUR
ATTACK
DECAY
AMP

 Output
(Mono or Stereo)

NO_HARMS

For further discussion about the workings of the Buzz generator the reader can refer to Dodge and Jerse,
Computer Music: Synthesis, Composition, and Performance, pp. 149-151.

10

PHASE MODULATION INSTRUMENT (PMins)

The PM instrument works exactly like the simple frequency modulation instrument described in Dodge
and Jerse [1986, pp. 105-115], except that it is implemented as a "phase modulator" instead of a
"frequency modulator" instrument. This allows the user to directly program the "Index of Modulation".
Also, unlike the FM implementation, the results of the PM implementation are independent of the sample
rate, and the phases are such that spectra are strictly predicted by the Bessel formulas in John Chowning’s
original article (Chowning, 1973; see also Beauchamp, 1992).

As discussed in Dodge and Jerse, the spectrum of the PM or FM sound depends entirely on two factors: 1)
the Index and 2) the Carrier-to-Modulator Frequency Ratio. In general, the higher the Index the
richer the spectrum becomes. The Carrier-to-Modulator Frequency Ratio affects the spacing between the
partials , whether or not partials exist below the carrier, and whether the result is a harmonic or
inharmonic spectrum.

The command fmplot* can be run from a graphics terminal (either a NeXT or Tektronix-compatible
terminal) to get a feel for the way the FM/PM spectrum behaves as we manipulate the two factors. In
response to a prompt you give the carrier frequency, the modulator frequency, and the Index, and fmplot
puts the corresponding spectrum immediately on the screen.

ADSR envelopes are used to control both the instrument’s amplitude and the Index, with separate controls
for the attack, decay, and release times and the sustain values. More detail on the ADSR is given in the
section which describes the Pluck-ADSR instrument. The ADSR envelope allows for a wide variety of
expression. Using zero attack and decay times, a SUS value of 1.0, and a release time equal to the
duration, the envelope becomes a pure exponential decay, and the sound has the quality of a string, chime,
or percussion, depending on the choices of the carrier-to-modulator ratio and the peak Index. With a
nonzero attack time and shorter decay, various woodwind, brass, or string-like sounds can be simulated.

PM Instrument Summary:

Names Available: PMins

Instances per Name: 50

I Statement Template: I(PMins START DUR) {OCT.PITCH AMP TAC TDC TRC SUSC
 FCFMRATIO INDEX TAM TDM TRM SUSM}

where TA, TD, and TR represent attack, decay, and release times, respectively. The suffixes C and M
mean "carrier amplitude" and "modulator Index" envelopes, respectively. FCFMRATIO is carrier
frequency divided by modulator frequency.

Typical I Statement: I(PMins 0 1) { 8.09 20000 .02 .02 .2 .7 3.2 5 0 0 .2 1}

11

PM Instrument Flow Diagram:

 FCFMRATIO
SUSM
TRM
TDM
TAM
INDEX

divide

 ADSR
ENV GEN

 SINE WAVE
OSCILLATOR PITCH convert

 carrier
frequency

×

SUSC
TRC
TDC
TAC
AMP

 ADSR
ENV GEN

 SINE WAVE
OSCILLATOR

amplitude
 control

phase modulation
 input

Output
(Mono or Stereo)

modulator frequency

In the actual implementation of this flow diagram, for efficiency, the two sine wave oscillators are
combined into a single phase modulation unit generator.

References on Frequency (Phase) Modulation Synthesis:

1. J. Chowning, "The Synthesis of Complex Audio Spectra by Means of Frequency Modulation",
Journal of the Audio Engineering Society, Vol. 7, pp. 526-534 (1973).

2. J. A. Bate, "The Effect of Modulator Phase on Timbres in FM Synthesis", Computer Music Journal,
Vol. 14, No. 3, pp. 38-45 (1990).

3. F. Holm, "Understanding FM Implementations: A Call for Common Standards", Computer Music
Journal, Vol. 16, No. 1, pp. 34-42 (1992).

4. J. Beauchamp, "Will the Real FM Equation Please Stand Up", Computer Music Journal, Vol. 16, No.
4, pp. 6-7 (1992).

5. A. Horner, J. Beauchamp, and L. Haken, "FM Matching Synthesis with Genetic Algorithms",
Computer Music J., Vol. 17, No.4.

*fmplot comes with the sndan analysis/synthesis package.

12

A PHASE MODULATION INSTRUMENT WITH ADeSR ENVELOPE (PMe)

This instrument is exactly the same as the ordinary PM instrument except that the ADSR envelopes have
been modified to include exponential changes during the "steady-state" or "sustain" portions of the
envelopes. The resulting ADeSR envelopes allow for smooth and independent crescendos or
decrescendos of the amplitude and index during a note, something impossible to accomplish with the
ordinary ADSR. Here is a graph of a typical ADeSR envelope:

1.0

0
ATTACK DECAY SUSTAIN TIME

SUS1

SUS2

RELEASE
DUR

PMe Instrument Summary:

Names Available: PMeins

Instances per Name: 50

I Statement Template:
I(PMeins START DUR) {OCT.PITCH AMP TAC TDC TRC SUSC1 SUSC2

 FCFMRATIO INDEX TAM TDM TRM SUSM1 SUSM2}

Typical I Statement: I(PMeins 0 1) { 8.09 20000 .02 .02 .2 .3 1
 3.2 5 0 0 .2 1 .2 }

Flow Diagram: Same as PM Instrument except that ADeSR envelope generators eplace the ADSR’s, and
there are two sustain values for each envelope.

13

THE BAND-PASS-FILTER NOISE INSTRUMENT (Bpfnois)

A simple band-pass filter is used to color and provide pitch for a wide band noise source. An exponential
decay envelope controls the final amplitude. The scorecard parameters are the filter center frequency
(given in terms of Oct.Pitch), the initial amplitude (AMP), the decibels of decay during the duration, and
the filter bandwidth (given in Oct.Pitch units). With fairly wide band widths, sounds resembling gun
shots (short durations) and crashing waves (long durations) can be made. Narrow bandwidths with short
decays sound more drumlike.

Usage is very similar to Pluck. However, the filter bandwidth is an additional parameter used for
Bpfnois. Another difference is that whereas the Pluck instrument’s exponential decay occurs as an
byproduct of its loop filter averaging process, the amplitude envelope of Bpfnois is created deliberately
using an EXPON unit generator.

Bpfnois Instrument Summary:

Names Available: Bpfnois

Instances per Name: 50

I Statement Template: I(Bpfnois START DUR) {OCT.PITCH AMP DB_DECAY BANDWIDTH}

Typical I Statement: I(Bpfnois 0 1) { 8.09 20000 60 .02 }

Flow Diagram:

×

EXPON

WHITE
NOISE

BANDPASS
 FILTER

DB_DECAY
DUR

OCT.PITCH
BANDWIDTH

AMP

Output

convert

convert
convert

14

THE NONLINEAR/FILTER INSTRUMENT (NLF Instrument)

This instrument is unusual in that four names can be used to invoke it and each one gives a distinctly
different sound. The sounds are modeled after four acoustical instruments, a cornet, a clarinet, an alto
saxophone, and a piano. For each of these names the sound quality can be varied by changing any of
several parameters:

BR or "Brightness". This is a value between 0 and 10 which varies the "spectral height" or relative
intensity of the higher partials.

TA or Attack Time and TDY or Decay Time. These vary the times spent during the attack and decay
portions of the complex envelopes used in this instrument.

FC and DAMP. These are parameters of a high-pass filter used in the instrument. FC can be chosen
to vary the "range" of the instrument; low values are used for low range instruments, high values for
high range. DAMP is a number between 0.1 and 1 which can be used to vary the "resonance" of the
instrument.

DYNAMIC is used to chose envelopes appropriate for the value given. A dynamic of pp, mf, or ff is
chosen by using the value 0, 1, or 2, respectively. At present the only dynamic available is 1 (mf),
except for the cornet which uses all three dynamics.

Theory:

The instrument works on the basis of nonlinear distortion of a sine wave. As the amplitude (!) of the sine
wave increases, the distortion increases, which creates more upper partials, and thus increases the
brightness of the sound. At a certain amplitude a "target" spectrum is achieved, which is modeled after
the spectrum of an acoustical instrument. For practical use, the parameter BR, on a scale of 0 to 10, is
used to control the brightness of the sounds. For each instrument modelled, envelope shapes are chosen
to separately control BR and the output gain (") of the nonlinear processor.

For reference, there are certain "target values" of the NLF instrument parameters which will give sounds
closest to the ones modeled. These are given below.

NLF Instrument Summary:

Names Available: cornet, clarinet, alt_sax, piano

Instances per Name: 5

I Statement Template: I(NAME START DUR) { OCT.PITCH AMP BR TA TDY FC DAMP
DYNAMIC }

Target I Statements:
/* name ts dur pitch amp br ta tdy fc zet dyn */
I(cornet 0 .9) {8.05 8000 4.3 .04 .08 3200 .42 0}
I(cornet 2 1.0) {8.05 10000 4.9 .11 .3 3200 .42 1}
I(cornet 4 1.5) {8.05 30000 8.2 .08 .3 3200 .42 2}
I(clarinet 6 1.5) {8.05 15000 8 .14 .48 2200 .30 1}
I(alt_sax 8 1.1) {7.11 15000 8 .28 .24 2800 .23 1}
I(piano 10 5.0) {8.00 15000 7.5 .56 1.92 1500 .50 1}

15

NLF Instrument Flow diagram:

OCT.PITCH
BR

TA
TDY
DUR

NAME
DYNAMIC
AMP

convert

 ENV3
ENV GEN

functions
 select

 SINE WAVE
OSCILLATOR convert

NONLINEAR
PROCESSOR

HIGH PASS
 FILTER

 ENV3
ENV GEN

 scale
TA
TDY
DUR

!(t) freq

F()

x

F(x)

×

Output

"(t)

BR(t)

"(t)

!(BR)

FC
DAMP

The envelope generator ENV3 operates on an assigned envelope function and allows the user to program
the preset attack and decay portions of the envelopes independently of the total duration of the note. This
is used for both the BR(t) and "(t) envelopes. Functions BR(t), "(t), !(BR), and F(x) are selected which
are appropriate for the particular instrument and dynamic. The BR(t) envelope is converted to the !(t)
envelope using a !(BR) lookup table. The nonlinear processor distorts the sine wave (with amplitude
!(t)) according to the function F(x). The high pass filter, with cutoff frequency FC and damping factor
DAMP accentuates the upper harmonics of the distorted signal.

References on Nonlinear Synthesis:

1. D. Arfib, "Digital Synthesis of Complex Spectra by means of Multiplication of Non-linear Distorted
Sine Waves", J. Audio Eng. Soc., Vol. 27, pp. 757-768 (1979).

2. M. LeBrun, "Digital Waveshaping Synthesis," J. Audio Eng. Soc., Vol. 27, pp. 250-266 (1979).

3. J. W. Beauchamp, "Brass Tone Synthesis by Spectrum Evolution Matching with Nonlinear Functions",
Computer Music J., Vol. 3, No. 2, pp. 35-43 (1979). Republished in Foundations of Computer Music,
C. Roads & J. Strawn, Eds., MIT Press, Cambridge, MA, pp. 95-113 (1985).

4. J. W. Beauchamp, "Synthesis by Amplitude and ‘Brightness’ Matching of Analyzed Music Instrument
Tones", J. Audio Engr. Soc., Vol. 30, No. 6, pp. 396-406 (1982).

5. J. W. Beauchamp and A. Horner, "Extended Nonlinear Waveshaping Analysis/Synthesis Technique",
Proc. 1992 Int. Computer Music Conf., pp. 2-5 (1992).

16

RUNNING A STEREO JOB

Instead of the command gom4c (or gom4C), you can use gom4c2 (or gom4C2) to create stereo sound
file. The responses are identical to those used with gom4c/C, so we will not repeat them here. However,
the I statements in your score must include LFRAC, as the last parameter before the right brace. LFRAC
is between 0 and 1 and represents the fraction of the sound in the left speaker. 1 - LFRAC is the relative
amount applied to the right speaker.

CHECKING ON THE PROGRESS OF AN M4C JOB

The job which computes your samples will run in the background. There are several ways to ascertain the
progress of a job. Assuming you are at a terminal, one way is to issue a ps command such as

% ps -aux | grep <your login> | grep m4c

which lists the current m4c background jobs and how much cpu time each has taken so far. This tells you
whether a job is still computing or not, but unless you have a good idea of how long it should take to
compute, it does not give you much indication about the time it will take to finish.

Another way is to type back the list file. The best way to do that is to use the command

% tail -f filename.list

which spells out the job’s progress in some detail by continuously printing lines. If you want to see
everything from the beginning of the file use ’cat filename.list’.

Here is summary of what the list file includes:

1) A statement that the sound output file has been created and the input score file has been recognized.
Failures here could cause the job to abort.

2) Initialization of a certain number of instances of the various instrument names is mentioned. These are
the instrument names which should occur on your I statements. Initialization of function generator names
(e.g. Fourfun) are also mentioned.

3) Success of completion of Pass1 and Pass2 should be mentioned. Failures should not happen unless
there are obvious errors in your score, such as using a symbol which is not recognized.

4) The beginning of Pass3 will be noted, and for each note a listing of the time and the parameters will be
given (assuming the instruments are properly designed). This allows you to see if any note’s parameters
have been misinterpreted. With ’tail -f’ the last note parameters printed correspond to the note currently
being computed.

5) When Pass3 completes, it gives the statement:

 Peak values for channels:
 [1] = xxxxxx
 End of Performance.

17

 Total Time = xx.xx, Section Time = xx.xx
[Pass 3 Successful]
[Job Complete]

Therefore, at the end of computation we have a report giving the peak amplitude of the piece and its total
time according to the score.

You may need to be careful about playing back a soundfile while it is being generated by M4C; the
machine may crash if you do so. If you want to hear intermediate results, you can copy the incomplete
soundfile to a different file and "sndplay" it instead.

RUNNING AN M4C JOB AS A COMMAND: USE OF FLAGS IN M4C JOBS

Instead of using one of the interactive gom4C type commands discussed so far, an M4C job can be run as
a command line program. The normal command line form of this command is

% m4c.xxxx [FLAGS] filename.snd filename.sc >& filename.list &

[FLAGS] refers to the optional use of flags of the form ’-x’ or ’-xx’ which cause the m4c program to
behave certain ways. There is no limit on the number of flags, but they cannot be combined into multiple
flags. Using ’>&’ for redirection to a list file is also optional (it happens automatically with gom4C), but
if this is not used, the listing will spill out at the screen; this may be no problem when using a multiple
terminal emulator such as the one provided by NeXTStep. The final ’&’ puts the job in the background.

An important flag for NeXT computers is ’-NH’, which causes the normal 16-bit integer sound file to be
prefaced by a standard NeXT header. The NeXT header automatically identifies the data format, number
of channels, and sample rate of the sound file. This is necessary for NeXT commands such as ’sndplay’
and applications such as Sound Works. So,

% m4c.xxxx -NH filename.snd filename.sc

causes the NeXT header to written at the beginning of the sound file filename.snd.

The sample rate is an important factor for the time it takes to compute a job. Usually, halving the sample
rate will halve the computation time. The default sample rate for M4C is SR=22050, one of the two rates
used on the NeXT 040 computer. This can be changed by using the ’-s’ flag as in

% m4c.xxxx -s5000 soundfile.snd scorefile.sc forces SR = 5000.

It may occasionally be useful to output a ’.fp’ (floating point, headerless) file. This is done by using the
’-FP’ flag:

% m4c.xxxx -FP soundfile.fp scorefile.sc makes a binary floating-point file.

If stereo (2 channel) is desired, it is necessary to set the channel flag to 2 (1 is the default). Assuming that
the instrument files used make use of this feature, the ’-c2’ flag will cause the output sample file to be
stereo:

% m4c.xxxx -c2 soundfile.snd scorefile.sc

18

Normally, M4C will not overwrite an existing sound file. To override that restriction, you can use the ’-e’
(expert) flag.

Several flags are available which allow the user to increase the default limit for several limiting
parameters in M4C.

The -in flag sets the number of instruments n that can be used in a score. The default is 50.

The -fn flag gives the number of function tables n that are can be declared. The default is 256.

The -pn flag increases the maximum number of parameters n which may be used within the { } brackets
of an I statement. The default is 60.

The ’-vn’ flag increases the maximum number of on/off "events " (about twice the no. of notes) that are
allowed per section. The default is 32000 events.

Flags are also available for resuming jobs which have for some reason been interrupted. Effective use of
these switches assumes more than a cursory understanding of how M4C works. However, here is a brief
outline: The ’-TA’ flag controls when (with respect to the score) sample computation actually begins.
’-TB’ sets when output samples occur, and generally these will be appended to an existing sound file.
Because many instruments (notably those involving reverberators) require that previous samples must be
computed for the current ones to be correct, the TA value generally must be less than the TB value.
Usually, TA can be determined as the earliest start time of the notes which are playing at time TB.
However, if a reverberator with a reverberation time of 2 seconds is involved, TB should be at least 2
seconds earlier than TB.

Further, since M4C actually operates in three passes, it is possible to control which passes are to be
computed. (Valid possibilities are -1, -12, -123, -2, -23, and -3.) If a job is interrupted in the middle of
pass 3, it is not necessary to recompute passes 1 and 2, provided the pass 2 output file has not been
destroyed. Here is an example of a job which resumes during pass 3 and outputs samples at precisely the
right instant:

% m4c.xxxx -3 -TA20.6 -TB30.3 soundfile.snd S2A021920

The ’-3’ flag indicates that only pass 3 is to be run, using the pass 2 output file S2A021920 as input (this
is essentially a sorted version of the original score). Sample computation will be skipped until time 20.6
seconds (which should correspond to a note-on boundary), and sample output will occur at time 30.3
seconds, with respect to the score.

Another flag which is quite useful is ’-a’, which causes "soft clipping" of the output when it exceeds
±16384. The result is that moderate clipping is not nearly as noticeable as it would be ordinarily. This
flag should be used when you are having difficulty predicting the exact output level. It is not needed if
you are sure the output will not exceed ±32767. This method is not a panacea for all amplitude
difficulties, however. If the (uncorrected) amplitudes greatly exceed ±32767, the sound of clipping will
still be heard.

As it stands, M4C gives little information about where out-of-range samples actually occur. However, the
’-OR’ flag causes the values of all out-of-range samples to be printed.

19

Another possibility for handling the tendency for samples to be out-of-range is to use the ’-rx’ (rescale)
flag, where x is a float rescale factor automatically applied to all samples generated. If you need to
diminish the general amplitude of the piece (and don’t want to lower all of the amplitudes in your score),
use an r value less than 1.0. If need to augment the general amplitude, use r greater than 1.0.

Typing in an M4C command with lots of flags can be a chore if the action has to be repeated. However,
if that happens, we recommend that the user write his own C shell script to execute the command. For
example, if you were to make a file as follows:

% vi runm4c

#! /bin/csh -f
echo "m4c.$1 -NH -e -c2 $2.snd $2.sc >& $2.list &"
m4c.$1 -NH -e -c2 $2.snd $2.sc >& $2.list &

% chmod 755 dom4c

you could then run the command m4c.class -NH -e -c2 flex.snd flex.sc >& flex.list & by typing

% runm4c class flex

This would automatically run m4c.class with flags -NH (for next header), -e (expert), and -c2 (stereo). It
would also automatically use the score file flex.sc to create the sound file flex.snd and the list file flex.list.
Note that class and flex automatically substitute for $1 and $2 in the script.

20

DESIGN OF M4C INSTRUMENTS

Instrument design generally proceeds from the instrument "flow diagram". This is very similar to an
analog synthesizer patch diagram. The instrument consists of interconnected modules called "unit
generators". In Music 4C, as in Music 4BF, the unit generators correspond to subroutine functions, and
the connections between them correspond to parameters which are passed. The parameters are either
obtained from the instrument statement (score card) or from other unit generators.

To begin with, let us look at a flow diagram for a particular instrument which we will call VibTone:

 Score
Card
Parameters

(<instru <start <dura-) { <octave. <ampli- <attack <decay <vibrato <vibrato }
 name> time> tion> pitch> tude> time> time> rate> amp>
(VibTone STIME DUR) { pitch amp ta tdy vibr viba } {

NOTE-TIME PARAMETER MAPPING

 vibai vibri

+

freq

vibphase

Sine

Sine

phase

OSCILI

OSCILI

LINENS

lstate ampi

x y

MONO

VibTone Instrument Flow Diagram

This instrument is designed to generate a sine wave whose frequency centers at freq (corresponding to
score card parameter pitch) and varies sinusoidally with frequency deviation vibai (corresponding to
viba) at rate vibri (corresponding to vibr). Meanwhile, the amplitude experiences a linear rise over ta
seconds to maximum amplitude ampi; this is followed by a linear decay over tdy seconds as the note
ends; the entire envelope duration is DUR seconds. The vibrato tone with linear attack/decay and sine
waveform are accomplished by the LINENS envelope generator, two OSCILI oscillators, and the
MONO unit generators interconnected as shown in the figure.

pitch, amp, ta, tdy, vibr, and viba are score card parameters particular to this instrument. In addition,
DUR, the note’s duration, is used for the note-time parameter mapping. The parameters ampi, freq,
vibri, vibai, and lstate are instrument parameters which are translated from these parameters at" note
time" and are used during the subsequent sample computation. In addition, phase and vibphase are
oscillator phases, which should be initialized (e.g., set to zero, usually at "start-time") and Sine is the

21

name of a function table which is universally available in M4C and in this case is used for both the main
oscillator and vibrato oscillator waveforms. x, y, and z are temporary variables used in the computation
of a sine wave sample with this instrument. Not shown in the above diagram are formulas used for the
parameter mappings between the score card parameters and the instrument parameters. These are
accomplished at the beginning of each note, some by direct assignment and some by means of special unit
generators which are generally only used at note onsets.

As an typical example of the distinction between a score card parameter and an instrument parameter,
consider pitch vs. frequency. A convenient way to numerically express pitch is to use the octave.pitch
designation. On the other hand, for an acoustician or technologist, frequency (in Hz) would be more
natural. However, for computation, the frequency translated into sample increment (si) is most efficient.
In fact, we see that actual frequency in Hz can be eliminated from the equation:

freq = (FUN_LEN/SR)×freq_in_Hz = (FUN_LEN/SR)×440.×2pitch/12.-8.75

where freq is in sample increment (si) units. This computation should occur at the beginning of each note
and can be accomplished by an M4C library conversion function called sipitch(). Thus, the above
equation would be normally replaced by the C language statement

freq = sipitch(pitch);

viba can also be profitably given in octave.pitch units. Thus, a value of .005 would correspond to a
frequency deviation of ±.5 semitone. However, for the instrument, this value should be translated into si
frequency units using

vibai = freq*(frfacpitch(viba) - 1);

frfacpitch() is a conversion function which translates a pitch interval given in octave.pitch into factor or
ratio units. When viba is a half semitone, this factor becomes approximately .03, which when multiplied
by the tone’s frequency, becomes the actual frequency deviation of the vibrato. Therefore, for a fixed
value of viba , the vibrato amplitude or depth is always a fixed fraction of the tone’s mean frequency.

Assuming that vibr, the vibrato rate, is most comfortably given in cycles-per-second (Hz), this need only
be translated into si units

vibri = sicps(vibr);

Some instrument parameters may be exactly the same as their score card equivalents. This is often true
for amplitude, where the instrument parameter ampi is defined in terms of the score card parameter amp
by

ampi = amp;

The parameter lstate is more abstract. This is a C structure which holds information about the status of
the linens() unit generator and thus hides the details from the user-designer, which he doesn’t need to
know anyway. This information comes from the score card parameters ta, tdy, and DUR, but is changed
as samples are computed throughout a given note. A special conversion function, linset(), is used to
translate these three parameters into the lstate structure:

22

linset(ta, DUR, tdy, &lstate);

Note that nothing is returned by this function via an equals sign. However, lstate is returned as an
argument of linset(), and that is why lstate is preceded by an ampersign.

As mentioned above, phase and vibphase are the phases of the two oscillators. They could be initialized
at the beginning of each note, but normally they are just initialized at the beginning of an entire piece.

CREATING AN M4C INSTRUMENT USING INSDES

Overview

The first step is to create a template file (e.g., VibTone.t), which contains the essential ingredients of the
instrument design. This file is then converted into a more complicated C language instrument file
(VibTone.c) using the special M4C translator program insdes:

insdes VibTone.t

To test the instrument design one further needs an orchestra file (e.g., VTorch.c) and a score file (e.g.,
VibTone.sc). To start with, the score could consist of a single short note:

I(VibTone 0 .1) {8.00 20000 .02 .02 7 .01}
End

and the orchestra file could simply be:

#include "muse.h"
initial() { VT_init("VibTone",10); }

where "VT" is a prefix declared in the template file VibTone.t, "VibTone" is the name used on the score
card, and 10 is the number of instances of VibTone which can be computed simultaneously.

Next we would create our own version of m4c, which we could call m4c.VT. This is done using the
commands

mx VTorch.c VibTone.c
mv m4c m4c.VT

Since the M4C utility mx causes the files VTorch.c and VibTone.c to be C-compiled, any C syntax errors
would be caught at this stage. However, with indes used in the normal way, the syntax errors will refer to
lines in the origianal template file. mx also causes the compiled files VTorch.o and VibTone.o to be
linked with the M4C library files to form the M4C executable inventively named, m4c. However, this
may renamed anything that the user wishes; for use with gom4c or gom4C, we suggest naming it m4c.X,
where X is a series of characters identifying the particular instrument or orchestra.

If we have successfully completed the mx (compile-link) stage, we can then test m4c.VT with our score
file VibTone.sc using a statement like

m4c.VT -NH VibTone.snd VibTone.sc >& VibTone.list &

23

or by using gom4c or gom4C. Failures at this point are likely to be caused by 1) an inability to create the
sound file VibTone.snd, 2) a mistake in the score, or 3) an execution bug in the instrument C code.
Usually errors of types 1) and 2) will be mentioned in the listing file and are easily corrected. Errors of
type 3) are more difficult to correct because the computer does not flag the position in the code where the
error occurred. The usual method of debugging consists of "sprinkling" printf statements throughout the
code, although it is possible to use a Unix debugger such as gdb. (Note for experts: Comment out the
"strip" command in util/mx if you need to run M4C under a debugger.) Of course, even if the program
executes without failure, an error in the C code or the score can cause an incorrect result (e.g., wrong
pitch). Errors of this type can be trapped by printing out variables within the C code, careful listening,
looking at signal plots (e.g., using sp or SoundWorks), and by studying the C code.

The entire sequence of using insdes, mx, and m4c can be automated by means of a makefile. This greatly
speeds up the instrument design debug cycle. Once the instrument has been reasonably well debugged, an
even better method on the NeXT computer is to use m4ctest, a graphic interface program which allows
fast variation of score card parameters for the testing of short tones.

Setting up an Insdes Template File

The indes template (.t) file is used to specify the parameters and algorithms used in the synthesis of a
particular instrument. The file is partitioned into several sections identified by a dot code, a word
preceded by a dot or period. The principal dot codes are ".comment", ".prefix", ".scorecard",
".instrument", ".start", ".note", and ".sample". Let us first illustrate the use of these codes for the
definition of the VibTone instrument:

.comment VibTone instrument: Sine wave with sine wave vibrato and linseg envelope.

.prefix
VT

.scorecard
pitch (4.00 12.00 octpitch 8.00)
amp (0 32000 amplitude 20000)
ta (0 1 sec .01)
tdy (0 1 sec .1)
vibr (.01 20 Hz 7)
viba (.001 .06 octpitch .01)
lfrac (0 1)

.instrument
float freq, ampi, vibri, vibai, phase, vibphase, lfraci;
LINENS lstate;

.start
phase = vibphase = 0.;

.note
freq = sipitch(pitch);
ampi = amp;
vibri = sicps(vibr);

24

vibai = freq*(frfacpitch(viba) - 1.);
linset(ta,DUR,tdy,&lstate);
lfraci = lfrac;

.sample
float x,y,z;
x = linens(ampi, &lstate);
y = freq + oscili(vibai, vibri, Sine, &vibphase);
z = oscili(x, y, Sine, &phase);
NoQuad(z,lfraci);

Note the use of the variables ’lfrac’ and ’lfraci’ and the apparent function NoQuad(). lfrac and lfraci are
only used for stereo (2 channel) jobs. They give the proportion (between 0 and 1) of the signal that goes
in the left channel. The remainder (1 - lfrac) goes in the right channel. NoQuad() is a macro that invokes
the unit generator mono() (as implied on p. 21) when a single channel job is done and the unit generator
stereo() when a dual channel job is occurring.

An alternative version of .sample in the form of "nested code" is

.sample
NoQuad(oscili(linens(ampi,&lstate),
 freq + oscili(vibai, vibr, Sine, &vibphase),
 Sine,
 &phase
),
 lfraci
);

This form has the advantage of not requiring the extra variables x, y, and z. Since memory locations x, y,
and z need not be accessed, this code may run somewhat faster than first version given.

A detailed explanation of the code which follows each dot code is given in the following section, MORE
DETAILS ON INSTRUMENT DESIGN.

A note on scorecard and instrument parameter names: These variable names should not be used in
any code within the instrument template file (or code which is included) except where they are meant to
represent these particular parameters. For example, if a structure name such as trumpet->pitch were to be
attempted, this rule would be violated, and compilation of the instrument would fail. Also, a parameter
name used under .scorecard may not be used under .instrument and vice versa.

A note on compiler errors: Even though the C compiler actually compiles the .c code generated by the
.t instrument file, compiler errors normally refer to actual lines in the .t file. Occasionally, it may be
necessary to actually look at the .c code. However, the .c code is obscured by imbeded statements which
facilitate referencing errors to the .t code. A version devoid of these obscuring statements can be created
if you run insdes with a -s flag, as in

% insdes -s instru.t

You will find that the resulting "stripped" instru.c file is much easier to read than the version created
without the -s flag.

25

A SUMMARY OF INSDES TEMPLATE FILE DOT CODE COMMANDS

In addition to the dot codes mentioned above, there are several other optional dot codes which allow more
flexibility in instrument design. For reference, a complete list of the dot codes and what they do is given
below. Each dot code should only occur once unless otherwise indicated.

.comment <comments> (optional)

Comments are optional and may occur more than once. They should be placed on the same line as
".comment" and should not extend beyond this line. They may be placed at various points in the template
file but not within sections after dot codes. The comments are not transmitted to the C version of this file.

.prefix (mandatory)
<Prefix, e.g., PM>

This dot code should occur either first or after a ".comment". The prefix should be short and preferably
consist solely of capital letters. This is used in naming the various functions used in the C language
version of the instrument definition. In particular, the function <Prefix>_init(), e.g., PM_init(), which is
needed for the orchestra file.

.scorecard (mandatory)
<list of score card parameters with parameter ranges, types, and default values>

This section is best explained in terms of an example:

amp (0 32000 amplitude 20000)
pitch (4 12 octpitch 8)
attack (0 1 sec .05)

The general form of a line is

<parameter> (<min_val> <max_val> <type> <default_val>)

The part of this line contained within parentheses can be omitted, but it is very useful for testing with
m4ctest on the NeXT computer, since this governs how the m4ctest sliders operate. It is also useful for
catching score errors when running an M4C job, as M4C will flag an error and abort the note in question
whenever a parameter falls outside the designated limits. Type can be any string; however, certain type
names have special effects on m4ctest slider behavior. These are amplitude, Hz, int, log, octpitch, sec,
and string. amplitude, Hz, and log result in slider log scales. int only allows integer values. octpitch
abruptly changes from (x).11999 to (x+1).00000. string is just a series of characters, and in this case
min_val, max_val, and devault_val are ignored.

All scorecard parameters become available as float variables in the ".note" section, except for string
parameters, which require the GetScorecard String(cardstring) function to bring in. Here is an example:

soundfile (0 0 string 0)

If an I card has the parameter "elephant_call" (quotes are needed), GetScorecardString(soundfile)
installed under .note would return the string "elephant_call" to the instrument program.

26

.globals (optional)
<C declarations>

Global definitions which are needed for the instrument can be placed after this command. This can
include use of #include, #define, and declarations of variables needed for more than one section of the
instrument code, including the use of extern variables, which communicate between instruments. This dot
code can occur in more than one place in the file, but any occurrence should take place before the C code
which requires it. Here is an example:

#include "ins.h"
#define MAXAMP 32000
float trigger, bessel(float, int), *array;
int iii;

.instrument (mandatory)
<C code declarations of instrument parameters>

These are the actual parameter variables used under .sample. They can be of any valid C type including
pointers, arrays, or user-defined structure types. These parameters are also available under .start.
Initializations should not be done within this code. An example is:

float freq, ampi, phase, *wave;
int numharms;
LINENS lstate;

Be sure that these parameter variables names are unique and do not repeat what has been given under
.scorecard.

.preinit (optional)
< C code statements>

If you have C code which must be executed at initialization of the instrument, but only once, rather than
once for each instrument instance (as in the case of the .start code), this is a good place to put it. For
example, we could have

int j;
array = (float *)malloc(10*sizeof(float));
for(j=0;j<10;j++) array[j] = j;

This code is executed before the ".start" code is executed, if it exists. In this case we are initializing the
global array "array", which was declared in the ".globals" example given above. If we had declared it
within .preinit, it wouldn’t be available for code in other sections. Variables char *name, which gives
the name of the instrument being initialized, and int maxv, which gives the number of instances (voices)
being initialized, are available here and could be utilized in the code.

.start (optional)
<C code statements>

C code after this optional command is executed once for each instance of the instrument initialized.

27

Instrument and global variables can be utilized within this code. As in ".preinit", it is o.k. to declare
private variables within this code. However, char *name is available, but not int maxv.

.init (optional)
<C code statements>

C code placed here works the same way as the .preinit code except that it is executed after any .start code
is executed and is the last thing to be executed in the initialization process. If InitDone() is executed
here, it prints an indication that the initialization process is complete.

.note (mandatory)
<C code statements>

This code is responsible for initializing instrument variables at the beginning of each note. Global
variables, scorecard parameters, and instrument parameters are available here. Three global variables
(declared within M4C) that are very useful are float SR (sample rate), float DUR (note duration), and float
STIME (note start time). Also, the array float *Func[], consisting of pointers to tables loaded by F cards,
can be used for envelope and waveform tables. Most statements will involve translation of scorecard
parameters into instrument parameters. A note can be aborted by executing "ABORTNOTE;".

.endnote (optional)
<C code statements>

Occasionally an instrument can benefit from code at the end of a note, after samples are computed. For
example, if a file is opened at the beginning of each note (under ".note"), this would be a good place to
close that file. Global variables and instrument parameters are available here, but not scorecard
parameters.

.sample (mandatory)
<C code statements>

This is the "meat" of the instrument, where the samples are actually computed. In order for computed
samples to be delivered to the sound file, one of the output generators, such as mono, stereo , channel, or
NoQuad must be used. The code represents the calculation of just one sample. Execution generally
continues until the end of the current note, but it can be terminated prematurely by using
"ABORTSAMPLE;". Scorecard parameters are not available, but global variables and instrument
parameters are. Any values that must be computed and saved for the next sample (e.g., the phase of an
oscillator table) must be stored in an instrument parameter. Global variables should not be modified
unless you know what you are doing.

Caveats for m4ctest (NeXT only)

Files included using #include under .globals will fail under m4ctest unless the file is in the area from
which m4ctest is launched or it is in /usr/include, unless you give absolute path names. Files specified as
strings in I cards will fail under m4ctest unless they are in the launch area or absolute paths are given.
Since only one instrument at a time can be tested, instruments which require the existence of another
simultaneous running instrument will fail under m4ctest. None of these restrictions hold for running M4C
as a command line program.

28

COMBINING INSTRUMENTS TO FORM AN ORCHESTRA

Instruments that you have designed or have been designed by others can be combined into orchestras in
arbitrary combinations. This is accomplished using a C language "master orchestra" file which includes
calls to the init functions of the individual instruments. The master orchestra file is then compiled and
linked to the individual instrument files (either in .o or .c form) using the mx command as in:

mx orch.c | .o instru1.c | .o instru2.c | .o ...

where .c | .o means that either the .c or the .o extension can be used. The instru.c files have already been
converted from corresponding instru.t files using insdes.

The result is an m4c run file, whose name you are free to change using, say

mv m4c m4c.myorch

A collection of instrument files (with .o extension) are found in the area $M4CDIR/classorch. The .t
sources for these files are in $M4CDIR/classorch/instru.src. Here is an example master orchestra file,
which happens to be the one used to make the class orchestra:

#include "muse.h"

initial()
{ int i; char gln[10];
FUN_LENGTH=2048; FFUN_LEN = FUN_LENGTH; /* increase table sizes for NLF */
Sine = sintab(FUN_LENGTH); /* recompute sine table of new length */

 BN_init("Bpfnois",50);

 BUZ_init("Buzz",50);

 for(i=1;i<=10;i++) {sprintf(gln,"GL%d",i); G_init(gln,1);}
 G_init("Glide",50);

 GF_init("GFins",50); /* GFins uses an F card. */

 PM_init("PMins",50);
 PMe_init("PMeins",50);

 PL_init("Pluck",50);
 PLADSR_init("Pladsr",50);

 NLF_init("cornet",5);
 NLF_init("piano",5);
 NLF_init("alt_sax",5);
 NLF_init("clarinet",5);
}

29

Comments on the orchestra file given above:

In this case #include "muse.h" is only needed for declarations about FUN_LENGTH, FFUN_LEN, and
sintab(), but it never hurts to have this line present. The lines beginning with "FUN_LENGTH =" and
"Sine =" could have been omitted, but they are included to increase the size of the Sine function from its
default value 512 to 2048, in order to improve the sound of the NLF instrument.

The rest of the C function initial() consists of calls to the individual init routines for each type of
instrument found in the area $M4CDIR/instru. The init function names given here are built into the
definitions of these instruments, and so should not be changed. However, for each init function, the name
given in quotes (the first argument of the init function) is whatever you choose to use on the I statement to
play that instrument (except for the NLF instrument, which only accepts the names given). The second
argument of each init function gives the number of "instances" for each instrument name being allocated.

Thus, the statement BN_init("Bpfnois",10); means that ten instruments called "Bpfnois" of type
BN_init are being initialized and allocated, and up to ten Bpfnois I statements can have play times which
overlap. An attempt to produce an eleventh instance of this instrument name will result in an error
message indicating that a note is being deleted.

Various instruments that you have developed, that have been developed by your friends, or that have been
placed in $M4CDIR/classorch may be linked together to produce custom versions of m4c. These
modules are either in the form of .o files or, if you are willing to write new instruments from scratch or to
modify the source code of existing instruments, in the form of .c (or .t) files. Suppose you have an
instrument file called "nasal.c", containing the init routine NAS_init(), which you would like to combine
with $M4CDIR/classorch/Pluck.o. The orchestra file "myorch.c" could look like this:

initial()
{
 PL_init("Pluck",10);

 NAS_init("nasal",10);
}

Next we would run

% mx myorch.c nasal.c $M4CDIR/classorch/Pluck.o

% mv m4c m4c.mine

The score file could include statements like

I(Pluck 0 1) {8.04 20000 60}

and I(nasal 3 .5) { according to your definition }

Of course, a job to compute a piece using these instruments could be run using gom4C.

30

USE OF FUNCTION GENERATOR CARDS IN M4C INSTRUMENTS

Several function (i. e., table) generators have been installed in M4C. The F card (used in the score file)
allows generation of function tables at any point in a piece, which can in turn be utilized by instruments
designed for their use. The general format for the F card is as follows:

F(Function_generator_name time) {func_no no_items data1 data2 ... }

The general syntax of the F card is similar to that of the I card. The only difference is that the F card has
no duration.Also, particular function generator names are permanently installed in M4C.

When the time given in an F card is reached, the function number designated is loaded according to the
algorithm associated with the function generator given. The function can then be picked up by one or
more instruments to be performed. At present function numbers 0 to 255 can be loaded.

Function Generators Currently Installed:

Fourfun

This provides a table of length FUN_LENGTH consisting of the sum of n harmonics of variable
amplitude. The waveform is a sum of sines. Here is the syntax:

F(Fourfun time) { func_no n amp1 amp2 amp3 ... ampn }

amp1 is the amplitude of the first harmonic, amp2 the amplitude of the second harmonic, etc. The sine
waves are superimposed using additive synthesis. The peak amplitude of the resulting waveform is
automatically normalized to 1.0.

Linsegfun

This provides a table of length FUN_LENGTH consisting of a sequence of straight lines connecting x,y
coordinates given in the F card. Here is the syntax:

F(Linsegfun time) { func_no n x1 y1 x2 y2 x3 y3 ... xn yn }

n refers to the number of x,y values subsequently listed. The x values must be ascending but do not need
to be contained within the table length (FUN_LENGTH). However, they are automatically scaled to
cover the length of the table. The y values are not scaled.

Splinsegfun

The syntax is exactly the same as Linsegfun except that the name Linsegfun is replaced by Splinsegfun.
Cubic spline functions are used to connect the coordinates given rather than straight lines. This results in
a smoother contour than afforded by Linsegfun. However, when abrupt slope changes are caused by
particular coordinate successions, splines may give unexpected results. This problem can usually be
rectified by giving more coordinates in between the ones needed for straight lines. The syntax is:

F(Splinsegfun time) { func_no n x1 y1 x2 y2 x3 y3 ... xn yn }

31

Nlpfun

Nlpfun is used to construct a nonlinear function which when used to distort a sine wave of a particular
amplitude will result in a waveform whose spectrum (the "target spectrum") is given on the F card. This
is intended for use in nonlinear/filter instrument designs. The general F card looks like:

F(Nlpfun time) { func_no xmax f1 fc damp n amp1 amp2 amp3 ... ampn }

xmax gives the maximum amplitude of the sine wave (relative to 1 which gives the target spectrum); f1,
fc, and damp are values used in the high pass filter calculation; n is the number of harmonics in the target
spectrum, and amp1, ..., ampn gives the actual target spectrum. See the previous section on the
Nonlinear/Filter Instrument for more discussion on the design of this type of instrument.

Use of Function Generators in Instrument Definitions

In order for an instrument played by an I card to use a particular function or group of functions, the
functions must be loaded in advance by F cards whose times precede or are equal to this I card. Once a
function has been loaded via an F card it may be used by an instrument invoked by an I card. Suppose the
I card looks like

I(Squawk 0 1) {8.09 20000 5 }

where 5 is the function number used by the instrument. Suppose also that the Score Card Parameter name
for "function number" is func_no. Then, all that is needed is for the note-time function (the code below
.note in the .t file) to have a statement like

wave = Func[(int)func_no];

wave is now a pointer to the table Func[5]. (The (int) cast is necessary because func_no is technically a
float.) The function can be tested to make sure it has been loaded (i. e., actually in the score) -- in order to
prevent M4C from bombing unceremoniously -- and then replaced with another function. For example,
since Sine is always loaded, it can be used as a substitute function. In this case, we would use

if(Func[(int)func_no] == NULL) wave = Sine; /* not loaded */
else wave = Func[(int)func_no]; /* normal case */

An alternative to specifying the function number on the I card would be to have the note-time routine
select among several function numbers based on, say, pitch. This assumes that these functions have
already been loaded using F cards. Here is an example:

if((pitch >= 7.00)&&(pitch < 8.00)) wave = Func[1];
else if ((pitch >= 8.00)&&(pitch < 9.00)) wave = Func[2];
etc.

However, another possibility is to call the function generator directly from the instrument definition. In
this case, the function data would be given in the instrument definition rather than with F cards in the
score. For details, see the descriptions of "table generators" given in M4C Unit Generators: Descriptions,
a companion manual to this tutorial.

32

USE OF STRING PARAMETERS IN M4C .NOTE CODE

Besides floating-point parameters, M4C allows instruments and custom F card generators to use strings as
parameters inside braces, wherever a floating-point number could normally be placed. A string starts and
ends with a double-quote ("). Backslash escapes are unimplemented (until enough users
complain), so characters like ’\n’ and ’\"’ cannot at present be used inside strings. The "*" and ">"
scorecard abbreviations work with strings just like with floating-point numbers. Up to 50000 strings may
be defined; each string can be up to 1024 characters long. (These limits are #define’s in the string-
handling code in m4/src/pass1.c.)

The string is represented internally as a floating-point number and passed as such to an instrument. It is
the instrument’s responsibility to realize that a particular scorecard parameter represents a string, and to
convert that number, say x, to a string thus (in its ".note" code):

 char *myString;
 myString = GetScorecardString(x);

The returned string is "read-only": do not modify the string by writing to the pointer returned by
GetScorecardString. If you need to modify it, modify a copy instead.

One special application of string parameters is using them for filenames, which the .note code can then
read to get information not easily represented in M4C scorefile format (e.g. multidimensional variable-
length arrays, soundfiles, external programs to run!). In the extreme case, the only M4C scorecard
parameter would be a filename, and the file itself would contain all the "real" parameters in its own
private format.

All of the above applies to the design of custom F card generators as well.

33

