[Photo of James Beauchamp]

James W. Beauchamp

Research Professor
Professor Emeritus, School of Music (composition-theory)
Department of Electrical and Computer Engineering (acoustics, audio, computer music)
University of Illinois at Urbana-Champaign Urbana, Illinois 61801 USA

Key research interests: music/audio signal processing; analysis, synthesis, and perception of musical sounds; musical acoustics; musical sound recognition; musical pitch detection; automatic music transcription; musical sound source separation; computer music composition.

I have been pursuing various projects in musical sound analysis/synthesis (music signal processing). Some of them are given below.

1) Continued development of the C/Unix-based software packages SNDAN, for sound spectrum analysis, and Music 4C, for musical score synthesis.

   Click here to download a PowerPoint talk on SNDAN.
   (Please let me know if the sounds don't play)

I discuss the theory of musical sound analysis/synthesis and describe the math behind SNDAN in my chapter in the book Analysis, Synthesis, and Perception of Musical Sounds: Sound of Music , Springer, 2007.

2) Experiments in perception of musical timbre. The procedure used most often is to test listeners's ability to discriminate between original acoustic musical sounds and modified synthetic versions.

In "Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters", Journal of the Acoustical Society of America (JASA), Vol. 105, No. 2, pp. 882-897 (Feb., 1999), Stephen McAdams, Suzanne Meneguzzi, and I examined the perceptual effects of various simplifications of the time/frequency spectral representations of musical instrument sounds. From this research we found that spectral centroid variation and spectral envelope irregularity are very important parameters for timbral quality of musical sounds.

In 2006 Andrew Horner and Richard So (Hong Kong University of Science and Technology) and I tested metrics for predicting perceptual differences between original and randomly altered musical sounds. A relative spectral error measure gave the best correlation with the discrimination data. This was published in A. B. Horner, J. W. Beauchamp, and R. H. Y. So (2006). "A search for best metrics to predict discrimination of original and spectrally altered musical instrument sounds", J. Audio Eng. Soc., Vol. 54, No. 3, pp. 140-156.

A followup paper is
A. B. Horner, J. W. Beauchamp, and R. H. Y. So (2011). "Evaluation of Mel-Band and MFCC-Based Error Metrics for Correspondence to Discrimination of Spectrally Altered Musical Instrument Sounds", J. Audio Eng. Soc., Vol. 59, No. 5, pp. 290-303.

Timbral correlates were also discussed in

M. D. Hall, J. W. Beauchamp, A. B. Horner, and J. M. Roche (2010). "Importance of spectral detail in musical instrument timbre", Proc. 11th Int. Conf. on Music Perception and Cognition (ICMPC 11), pp. 69-74 (2010).

James W. Beauchamp, "Perceptually Correlated Parameters of Musical Instrument Tones", Archives of Acoustics, Vol. 36, No. 2, pp. 225-238 (2011).

3) In conjunction with former Music and ECE graduate student Tim Madden, development of Armadillo , a real-time/non-real-time musical sound spectrum analyzer, for PPC Macintosh computers. (Armadillo won the Bourges Computer Music Software Competition in the sound analysis category in 1998.)

4) Exploration of a method of multiple wavetable synthesis called "Spectral Dynamic Synthesis". The idea is to be able to emulate acoustic musical instruments and to control their loudness, pitch, brightness, attack, decay, and other parameters while retaining their naturalness. I have worked on this project in conjunction with Andrew Horner at Hong Kong University of Science and Technology (HKUST).

  Here is a Spectral Dynamic Synthesis trumpet demonstration (wav file) (mp3 file).

5) With former ECE graduate students Zheng (Geoffrey) Hua (from Beijing, China) and Bowon Lee (from Korea), research on spectrum-based piano tone analysis and synthesis.

 Here is a spectrum-based wavetable-synthesized piano demonstration (wav file) (mp3 file).

6) With former UIUC ECE doctoral student Mert Bay to develop Matlab software for polyphonic pitch detection and instrument voice separation. Files giving the first separation results are here . For his PhD dissertaion Dr. Bay tested his software on a 5-channel recording of a woodwind quintet .

7) Analysis of the trombone transfer function and comparison of it with the input impedance, including the effects of nonlinear propagation. I've given several talks on this topic. Three conference proceedings papers are here.

8) In the past (1964): Invention of the Harmonic Tone Generator.

9) Seminar on analysis/synthesis and music signal processing. I have been working with undergraduate students under ECE 396 or 397 and Music 499 on individual study projects. I start with having the students become familiar with the SNDAN and M4C software, and then they learn to write programs in C to analyze the time-varying pitch and timbre of sounds. Midway through the semester they begin their individual projects. Examples of successful projects have been: removal of squeeks from saxophone recordings; chord recognition; pitch detection of rapid passages using autocorrelation; elongation of musical sounds with and without vibrato without changing micro-texture or vibrato rate. Some of these projects result in presentations on campus or at regional or national professional meetings.

10) Organization of special sessions at meetings of the Acoustical Society of America (ASA). Recent examples are:

"Musical Pitch Tracking and Sound Source Separation Leading to Automatic Music Transcription I, II", 154th ASA meeting, Nov-Dec, 2007, New Orleans. Click here to see materials from these sessions.

"Signal Representations and Models of Musical Sounds" (with Bertrand David), 155th ASA Meeting (Joint with the European Acoustics Association and the French Acoustical Society), June-July, 2008, Paris, France.

"Analysis, Synthesis, and Perception of Musical Sound", 160th ASA meeting, Oct., 2010, Cancun.

"Expressivity in Digital Music Synthesis", 162nd ASA meeting, Oct, 2011, San Diego.

"Musical Timbre: Perception and Analysis/Synthesis" (with Andrew Horner), 163rd ASA meeting (Acoustics 2012), May, 2012, Hong Kong.

"Measurements, Modeling, and Simulations of Brass Instruments" (with Wilfred Kausel and Thomas Moore), 165th ASA Meeting (in conjunction with the 21st International Congress on Acoustics (ICA) and the 52nd Meeting of the Canadian Acoustical Association), June, 2013, Montreal.

" Automatic Musical Accompaniment Systems" (with Christopher Raphael), 167th ASA Meeting, May, 2014, Providence.

"Music Signal Processing" (with Masataka Goto), 172nd ASA Meeting (Joint with the Acoustical Society of Japan), Nov-Dec, 2016, Honolulu.

Click here for Biographical Information

Click here for List of Publications

Click here to go to the Computer Music Project home page.

JB email: jwbeauch AT illinois DOT edu

Latest update: 01/30/2018.